The genus distributions of 4-regular digraphs

نویسندگان

  • Rongxia Hao
  • Yanpei Liu
  • Taoye Zhang
  • Lanshuan Xu
چکیده

An embedding of an Eulerian digraph in orientable surfaces was introduced by Bonnington et al. They gave some problems which need to be further studied. One of them is whether the embedding distribution of an embeddable digraph is always unimodal. In this paper, we first introduce the method of how to determine the faces and antifaces from a given rotation scheme of a digraph. The genus distributions of two new kinds of 4-regular digraphs in orientable surfaces are obtained. The genus distributions of one kind of digraph are strong unimodal, which gives a partial answer to the above problem. ∗ Supported by Beijing Jiaotong University fund No. 2004SM054 and NNSFC No. 10571013. Corresponding author. 80 R. HAO, Y. LIU, T. ZHANG AND L. XU

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumeration of digraph embeddings

A cellular embedding of an Eulerian digraph D into a closed surface is said to be directed if the boundary of each face is a directed closed walk in D. The directed genus polynomial of an Eulerian digraph D is the polynomial ΓD(x) = ∑ h≥0 gh(D)x h where gh(D) is the number of directed embeddings into the orientable surface Sh, of genus h, for h = 0, 1, . . . . The sequence {gh(D)|h ≥ 0}, which ...

متن کامل

The genus distributions of directed antiladders in orientable surfaces

Although there are some results concerning genus distributions of graphs, little is known about those of digraphs. In this work, the genus distributions of 4-regular directed antiladders in orientable surfaces are obtained. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

Vertex Removable Cycles of Graphs and Digraphs

‎In this paper we defined the vertex removable cycle in respect of the following‎, ‎if $F$ is a class of graphs(digraphs)‎ ‎satisfying certain property‎, ‎$G in F $‎, ‎the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $.‎ ‎The vertex removable cycles of eulerian graphs are studied‎. ‎We also characterize the edge removable cycles of regular‎ ‎graphs(digraphs).‎    

متن کامل

0n removable cycles in graphs and digraphs

In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...

متن کامل

Embedding Digraphs on Orientable Surfaces

We consider a notion of embedding digraphs on orientable surfaces, applicable to digraphs in which the indegree equals the outdegree for every vertex, i.e., Eulerian digraphs. This idea has been considered before in the context of “compatible Euler tours” or “orthogonal A-trails” by Andsersen at al [1] and by Bouchet [4]. This prior work has mostly been limited to embeddings of Eulerian digraph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2009